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A NEW CLASS OF ASYNCHRONOUS ITERATIVE 
ALGORITHMS WITH ORDER INTERVALS 

J. C. MIELLOU, D. EL BAZ, AND P. SPITERI 

ABSTRACT. This paper deals with a new class of parallel asynchronous itera- 
tive algorithms for the solution of nonlinear systems of equations. The main 
feature of the new class of methods presented here is the possibility of flexi- 
ble communication between processors. In particular partial updates can be 
exchanged. Approximation of the associated fixed point mapping is also con- 
sidered. A detailed convergence study is presented. A connection with the 
Schwarz alternating method is made for the solution of nonlinear boundary 
value problems. Computational results on a shared memory multiprocessor 
IBM 3090 are briefly presented. 

1. INTRODUCTION 

In the past few years a large number of parallel computing methods have been 
proposed for the solution of large scale numerical problems (see Bertsekas and 
Tsitsiklis [7], Hockney and Jesshope [22], Ortega [30], and Schendel [34]). Among 
parallel algorithms asynchronous iterative methods have received a considerable 
amount of attention. Asynchronous algorithmic models were introduced by Chazan 
and Miranker (see [8]) for the solution of linear systems of equations. A necessary 
-and sufficient condition of convergence is given in [8] (see also [2]). 

In the nonlinear case, the convergence properties of parallel asynchronous itera- 
tive algorithms are now well understood. Many authors have concentrated on fixed 
point problems. In particular Miellou (see [24] and [26]) and Baudet (see [3]) have 
shown contraction properties using a vectorial norm (see also [33]). El Tarazi [15] 
has shown a contraction property using an appropriate scalar norm. 

A complementary approach dealing with the properties of the nonlinear equa- 
tions operator was considered by Miellou and Spiteri [29], Giraud Spiteri [20], and 
Spiteri [35] (see also [36]); the authors quoted above have proposed sufficient condi- 
tions of convergence for asynchronous iterations. The reader is referred to Giraud 
and Spiteri [21] for an implementation of asynchronous algorithms. 

Some authors have also made use of the discrete maximum principle. Monotone 
sequences of vectors are generated in this case. Miellou [25] has given a sufficient 
condition of convergence for asynchronous iterations under partial ordering. Other 
contributions are due to El Tarazi [16], Miellou [27], El Baz (see [10], [12], and 
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[13]), Frommer (see [18] and [19]). Reference is also made to Cousot [9] for a study 
related to the proof of programs using fixed point techniques. 

Finally, we note that Bertsekas has proposed a different approach based on the 
definition of a sequence of nested level sets (see [5] and [7], see also [4], [6], and [11]). 
Perturbation of fixed point iterative algorithms has been studied in this context by 
Miellou, Cortey-Dumont, and Boulbrachene (see [28]). 

In this paper we consider partial ordering techniques and propose new parallel 
asynchronous iterative methods which are more general than the ones quoted above. 
An original feature of the new parallel iterative methods presented here is flexible 
communication between processors. More precisely, updating phases can use data 
which are issued from computations in progress. This leads to a better coupling 
between communication and computation. In contrast with previous studies (see 
[3], [8], and [25]), the methods presented here permit one to consider block itera- 
tive schemes with delayed access to block subvectors, the components of which are 
relative to different iteration nuinbers or intermediate computations not explicitly 
labelled by an iteration number. Another important feature of this paper is the 
use of mappings which approximate the solution. A detailed convergence study 
is presented. The new model of parallel asynchronous iterations proposed in this 
paper can be applied with success to subdomain methods for the solution of partial 
differential equations and gradient type methods for network flow problems. Com-- 
putational studies using shared memory and distributed memory multiprocessors 
are presented in detail in two complementary papers (see [14] and [37]). Com- 
putational experiences have shown the practical interest of the proposed parallel 
asynchronous iterative methods. A brief presentation of numerical results for the 
solution of partial differential equations via subdonain methods is made at the end 
of the paper. 

The paper contains five sections. In Section 2 we present the main problem 
and give some background material. Section 3 deals with the new class of parallel 
asynchronous iterative methods. Two kinds of approximations of the fixed point 
mapping are presented in Section 4. In Section 5 we consider the application of 
the theoretical study to the Schwarz alternating method for the numerical solution 
of boundary value problems; computational experience using a shared memory 
multiprocessor IBM 3090 is also presented in this section. 

2. PROBLEM STATEMENT 

2.1. Notations, background material. Let n be a positive integer and assume 
that 

(2.1) a is a continuous mapping of Rn into RT, 

(2.2) a is a surjective M-function. 

We recall that the mapping a is an M-function (see [31] and [32]) if a is off-diagonally 
antitone i.e. for any x C RI, the functions defined as follows: 

(2.3) alk: It C R IX +tek E RnXR}- R, 

(alk(t) = a, (x + tek), I :+ k, 1, k =1...,n, 

are monotone decreasing, where ek C Rfn k 1,... , n, are the unit canonical basis 
vectors and furthermore a is inverse isotone i.e. 

(2.4) a(x) < a(y) for any x, y C Rfn implies that x < y. 
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In the sequel we will make use of the following notation: for any sequence {xk} c 
R,linl--oO xk +oo (lilAk-oo xk= o) if liMk,OO Xz = +o)o (lin1k,,c Xik 

-oc) for at least one index i. 

Definition 1. The mapping a: Rn - Rn is order-coercive if for any sequence 
{xk} C Rn, such that Xk < Xk+1, k 01, ..., and limk, xk = +oo, we have 
limk,o a(xk) = +oo and for any sequence {xk} c Rn, such that Xk > Xk+l, k 
0, 1, ..., and limk, x k =-oo, we have lim1k a(xk) =-oo. 

We can characterize the surjectivity of M-functions by means of the order- 
coercivity concept (see [32, Theorem 3.7]). 

Theorem 1. Let a: Rn -* Rn be a continuous M-function. Then a is surjective 
if and only if a is order-coercive. 

We consider now the solution of the following system of equations 

(2.5) a(y) = 0. 

Under the above assumptions problem (2.5) has a unique solution. 

2.2. Subproblem decomposition and associated fixed point mapping. Let 
E = Rn and consider the following splitting of E: E = fi> Ei, where a is a 
positive integer, Ei = Rni, and Zai1 ni = n. Each subspace Ei is endowed with 
the natural (or componentwise) partial ordering associated with the cone Ki = Rni 
of vectors with non-negative components in Rni. Let w c E. Consider the following 
block decomposition of w: 

W = {WII... IWii ... 1w}l fEil 
i=1 

.and the following block decomposition of a: 

a(w) = {al(w),.. .,ai(w), . ,ac(w) } c JJEi. 
i=1 

In the sequel ai(wi,....Wjl,Yi ? l... ,wc) will also be denoted by ai(yi;w). 
Let assumptions (2.1) and (2.2) hold. Then 

2.6) ffor all i c 1 ...., I } and all w c E, the mapping: Yi -*ai (yi, w), 
(is a continuous surjective M-function of Rni onto Rni 

(see [32, Theorem 3.5]). Moreover it follows from the assumption (2.2) that 

(2.7) Sfor all w E E and i E {1, .1.., Ia}, the problem ai(zi; w) = 0, 
(has a unique solution zi. 

Thus the mapping F from Rn onto Rn such that 

(2.8) F(w) = z = {zj, zi. Z}, 

with zi from (2.7) is well-defined. It is a fixed point formulation for problem (2.5) 
since 

F(y) -y f a(y) = 0. 

Proposition 1. F is isotone on E. 
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Proof. Let w and w' c E such that w < w'. Let z = F(w) and z' = F(w'), where 
Zi satisfies ai(z; w') = 0, i c {1,...a,l}. By the off-diagonal antitonicity of a we 
have 

ai(z/; w) > O, i c {1, ... al 

Thus for all i E {1, ... ., we have 

ai (z/; w) > ai (zi; w) = O, 

and by the inverse isotonicity of ai(zi; w), we have for all i {1,.I. ., a} 

zi < Zi 

2.3. Supersolutions and a-supersolutions. 

Definition 2. A vector y c E is a supersolution (a subsolution) if F(y) < y 
(F(y) > y). 

Definition 3. A vector y c R'+ is an a-supersolution (an a-subsolution) if a(y) > 0 
(a(y) < 0). 

Proposition 2. If y is an a-supersolution, then y is a supersolution. 

Proof. It follows from (2.7) and (2.8) that for all i c {1,.I. , a}, we have 

ai (Fi (y), y) = 0 < ai (y). 

By the inverse isotonicity of ai we have 

Fi(y) < yi. D 

Remark 1. In general the converse is false. For example, consider the case where a 
is a linear mapping. Let A be the associated matrix, then it follows from assumption 
(2.2) that A is an M-matrix. We have 

0e 

ai(y) = EAijyj, 
J=1 

where {Aij } results from the block decomposition of A. The block diagonal matrices 
Aii, are necessarily M-matrices. We have also 

yi- Fi(y) = yi + EZAi7Aijyj. 
j#Ai 

In particular, we note that yi-Fi(y) > 0, does not imply Aii(yi-Fi(y)) = ai(y) > 0. 
Indeed, consider the case where Ei = R2 and Aii 05 -0,5 |; then for yi-Fi(y) 
{ 11,}T, we find that 

Aii (yi-Fi (y)) ai (y) = {-5 

However in the linear case if F corresponds to the Jacobi mapping associated with 
a point decomposition of the M-matrix A (i.e. a = n and Ej = R, j c {1, .. n}), 
then w > F(w) is equivalent to Aw > 0. 

Proposition 3. Let a be an M-function and w CE R n an a-supersolution. Let 
s c {,...,n} andv C Rn, be such thatv < w, ai(vi;w) > 0, for alli C s and 
Vi = wi, for all i f s, then v is an a-supersolution. 
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Proof. For all i c {1,... , n} we have ai(vi; w) > 0, since w is an a-supersolution. 
Thus by the off-diagonal antitonicity of a we find that 

ai (vi; v) >ai(vi; w) > . E 

Proposition 4. Let a be an M-function, v and w two a-supersolutions. Then 
v A w = {min{vi, w1}, . .. , min{vr, Wr}, ... ., min{vn, wn}} is an a-supersolution. 

Proof. We use the following notation: a(v A w) = {ai(v A w), .. ., a,(v A w), ... 

an (v A w) }, where ar corresponds here to a point decomposition of the mapping a. 
For all r {1,.. . , n}, we have 

ar(v A w) = ar(vr A wr; v A w). 

By the off-diagonal antitonicity of a, we have for all r c {1, ... n, 

ar(Wr; v A w) > ar(w) > 0, and ar(vr; v A w) > ar(v) > 0. 

Thus, ar(v A w) > 0. 

3. ASYNCHRONOUS ITERATIONS WITH ORDER INTERVALS 

In Section 2 we have considered a fixed point mapping associated with the exact 
solution of the subproblems (2.7). In this section we study fixed point mappings 
associated with approximate solutions. Such mappings are introduced for the so- 
lution of problem (2.5) via parallel asynchronous iterative methods with flexible 
communication. 

3.1. Supermappings and a-supermappings associated with F. Throughout 
the paper we adopt the following notation for order intervals. Let xi, yi c Ei, be 
such that xi < yi; then an order interval in Ei is denoted by 

(Xi, yi)i = {zi C Ei I xi < zi < yi}. 

Similarly, let x, y c E, be such that x < y; then an order interval in E is denoted 
by 

(x,y) ={z E I x < z < y}. 

Definition 4. Let a be an M-function. Then the mapping F' with components 
Fia is an a-supermapping associated with F if for all i c {1, ... , a} and y elements 
of the domain of definition of Ff': {y C E ai(y) > 0}, we have Fia(y) < yi, 
ai(Fia(y), y) > 0, and Fia(y) + yi if Fi(y) + yi. 

Definition 5. Let a be an M-function. Then the mapping Fa with components 

Fia is a supermapping associated with F if for all i C {1, ... , a} and y element of 

the domain of definition of Fia: {y C E ai(y) > 0}, we have Fia(y) cE (Fi(Y)vyi) 
and Fia(y) + yi if Fi(y) y yi 

Proposition 5. If Fa is an a-supermapping associated with F, then Fa is a su- 
permapping associated with F. 

Proof. From (2.7), (2.8), and Definition 4 it follows that 

ai (Fi (y); y) = O < ai (Fia (y); y). 

Then 

Fi(y) < Ffjy), 

since ai is inverse isotone. 
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Remark 2. The converse of Proposition 5 is in general false. This result can be 
shown using an argument similar to the one developed in Remark 1. 

Remark 3. We can analogously define submappings and a-submappings associated 
with F by reversing the inequalities. 

3.2. A new class of parallel asynchronous iterations. In this section we define 
a general class of iterative methods which contains in particular sequential relax- 
ation methods like Jacobi or Gauss-Seidel and parallel iterative methods whereby 
components are updated simultaneously by concurrent processors without any or- 
der nor synchronization. The new class of asynchronous iterations presented here 
allows also flexible communication between processors. We introduce first the con- 
cepts of steering and sequence of delays. 

Definition 6. A steering S of components of the iteration vector, is a sequence 
{s(p)} where p C N, the set of natural integers, such that 

(3.1) forallpCN, s(p) E{l,...,a}. 

Definition 7. A sequence {r(p)} (or 1?) of maximal delays in the access to the 
updated components of the iteration vector, is defined by 

r(p) = Jr, (p),.., ri(p), .., r,,,(p)l C N' for all p C N, 
where for all i C {1,. . ., I} and p E N, 0 < ri(p) < p and ri(p)= z0 if i = s(p). 

We note that the latest condition has been introduced in order to simplify the 
analysis of the algorithms. This assumption is more restrictive than the one used 
in the classical model, however it is natural since it implies that each processor has 
access to its own working space without delay. In particular, this condition has 
been used in the framework of interval arithmetic (see [19]). 

We introduce the functions pi: N -* N, i C {l,.I. , a}, defined by pi(p) 
p - ri(p) and satisfying for all i C {1, ... , a} and p C N: 

(3.2) 0 < pi(P) < p, 

(3 3) Pi (P) = p, if i = s (p). 

In the sequel, we will denote by p(p) the mapping from N' into itself, with compo- 
nents Pi(P), i E {1,... , a}. We introduce now the sequences {Kip}, p C N, defined 
by 

(3.4) Kip= {k C N s(k) = i, O < k < p}, i C {1,...a, p c N. 

The elements of the set Kip correspond to the iteration numbers between 0 and p 
at which the ith block component of the iteration vector is updated. We note that 

(3.5) {KiP} is a denumerable sequence of finite elements of the set of parts of N. 

Moreover {KiP} is nested: 

(3.6) KiP CKip+. 

Definition 8. Asynchronous iterations with order intervals associated with the a- 
supermapping Fa are sequences {yP} defined recursively as follows. For all p C N, 

(3.7) { yJ?l a(v P+- if i =s(p), 
y7J? i if i 7~s(P), 
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where yP is implicitly defined by 

(3.8) y? = yo, an a-supersolution 

and 

(3.9) yP E (yP,yP(P) A q), if p > 1, 

where the block-components of the vector yP(P) E E are the subvectors ypi(p), i c 

a}, and q = maxkEKP k. 

We note that yP E (yP,yP(P)) if KiP = 0, i = 1,...,a, where 0 denotes the 
empty set. 

Remark 4. Asynchronous iterations defined by (3.7)-(3.9) are general iterative 
methods whereby iterations are carried out in parallel by a processors in arbitrary 
order and possibly without any synchronization. Flexible communication between 
processors is the main feature of this class of algorithms. Indeed we note that the 
block components -P of the iteration vector used at the time of the updating of 

yP+l are taken anywhere in the order interval (yP, P(P) A y0)j, where yq denotes 
the value used at the time of the last updating of the block-component yi and 
yP(p) is related to the non-deterministic behaviour of the iterative scheme. The 
introduction of order intervals permits us to take into account data coming from 
computations which are in progress and which are not explicitly labelled by an 
iteration number. So, there is a better coupling between communication and com- 
putation and we may expect a faster convergence. Moreover each communication 
of a block subvector is not necessarily associated with a given iteration number. 
The exchanged values of the components of each block subvector can be relative 
to different iteration numbers. We note that the model presented in this study 
permits us to analyse asynchronous block iterative methods directly in the block 
decomposition framework. So, it is not necessary to introduce a model defined with 
respect to individual components that would be artificial and cumbersome in the 
context of this study. The use of a-supermappings which approximate the solution 
of subproblems is another important feature of the parallel methods presented here. 

Proposition 6. Let a be a continuous surjective M-function, F the fixed point 
mapping defined by (2.7) and (2.8), Fa an a-supermapping associated with F, 
y? c E an a-supersolution, 3, and R. a steering and a sequence of delays, respec- 
tively. Then the asynchronous iteration {yP} given by (3.7)-(3.9) is well defined 
and satisfies 

y* < < yp+l < yP < ... < yO 

and limpO, yP = y*, where y* is an a-supersolution of problem (2.5). 

Proof. We proceed by induction. It follows from the equality (3.8) that 

(3.10) as(o) (y?) = as(0) (y?) > 0. 

Thus, the relations (3.7) and (3.10) imply the existence of a unique y1 c E. By the 
definition of the a-supermapping Fa, it follows from (3.7) and (3.8) that 

(3 .1 1 ) YS (O) < ? () = YsY(( ) 
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Moreover, it follows from (3.7) and (3.11) that 

(3.12) y1 <?y0 

It follows from the definition of the a-supermapping F , (3.7) and (3.8) that 

(3.13) ai (y') = ai (y'; yo) > 0, if i = s (0). 

Moreover, by the off-diagonal antitonicity of a it follows from (3.7), (3.12), and 
(3.8) that 

(3.14) ai(y') = ai(y?; y') > ai(y0) > 0, if i 54 s(0). 

The inequalities (3.13) and (3.14) imply 

(3.15) a(y1) > 0. 

The relations (3.10), (3.12), and (3.15) give the first step of the induction. We 
assume now that for some p there exists a unique yr c E, for all m, 0 < m < p 
and a unique ym EE, for all m, 0 < m < p, such that 

(3.16) as(m) (y) > 0, 

(3.17) yP < ... < ym < ym-i < < o 

(3.18) a(ym) > 0. 

It follows from (3.17), (3.3), and (3.9) that 

(3.19) Ys(rn<Ys(rn), for all m < p. 

From the relations (3.4) and (3.7) we have 

(3.20) P = if Kp 0. YS (P 
= 

YS(P), s(p)- 
It follows from the relations (3.17), (3.9), and (3.2) that 

(3.21) yP < y?, if KP = 0. 

By the off-diagonal antitonicity of a it follows from the relations (3.19)-(3.21) that 

(3.22) as(p)(yP) = as(p)(ys(p);YP) > as(p)(y?) > 0, if KP = 0. 

Consider now the case where K Pp) 78 0. From (3.7) and (3.4) we have 

(3.23) Ys(p) = Yq?1 if Kp 7 
s( Ys(q) s (P) 0, 

where 

(3.24) q = max k. 
k EKP 

s(p) 

Thus, from the equalities (3.19) and (3.23) we have 

(3.25) ~ P 
-P( Yq?1 if Kp 

Ys(p) 
= Ys(p) Ys(q) i s(p) 78 0. 

Moreover, from the relation (3.9) we find that 

(3.26) VP < yq if K P) 0. 

By the off-diagonal antitonicity of a and the definition of the a-supermapping Fa, 
it follows from the relations (3.25), (3.26), and (3.16) that 

(3.27) as(p)(yP) = as(q) (ysq+j; YP) > as(,)(y q+1; Yq) > O, if KP 0. 

We note that the relations (3.22) and (3.27) extend the inequality (3.16) to rank 
p + 1. The relations (3.7)-(3.9), (3.22), and (3.27) imply the existence of a unique 
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yP?l. By the definition of the a-supermapping Fa, it follows from the relations 
(3.7) and (3.19) that 

(3.28) ?P Y<(p) p 

Thus, it follows from the relations (3.7) and (3.28) that 

(3.29) yP+1 < yp. 

We note that (3.29) extends the inequality (3.17) to rank p + 1. By the off-diagonal 
antitonicity of a and the definition of the a-supermapping Fa, it follows from the 
relations (3.29), (3.9), and (3.7) that 

(3.30) as(p)(yP+ ) > aS(p)(yp+ );yP) > aS(p)(yp(+);yP) > 0. 

Moreover, by the off-diagonal antitonicity of a it follows from (3.7), (3.29), and 
(3.18) that 

(3.31) aj (yP+1) -aj (y'; yP+1) > aj (yP) > 0, if j 54 s(p). 

The inequalities (3.30) and (3.31) imply 

(3.32) a(yP+l) > 0. 

The inequality (3.32) extends (3.18) to rank p + 1. Thus, the induction is complete. 
By the surjectivity of a, there exists y- c E such that 

(3.33) a(y-) = 0. 

Moreover, we have 

(3.34) a(yP) > 0, for all p. 

By the inverse isotonicity of a it follows from the relations (3.33) and (3.34) that 
y < yP, for all p. 

Hence, there exists y* such that < < y*, y* < yP for all p, and 

(3.35) lim yP = y*. 

By the continuity of the mapping a it follows from the relations (3.34) and (3.35) 
that 

a(y*) > 0. 

Thus, y* is an a-supersolution. D 

4. Two CLASSES OF a-SUPERMAPPINGS AND ASSOCIATED 

CONVERGENCE RESULTS 

4.1. a-supermappings of the first kind. 

Definition 9. Let Fa and Fb be two a-supermappings associated with F with 
components Fia and Fib respectively, defined on the domain {y E E I ai(y) > 0}. 
Then Fa and Fb satisfy the relation 

FaceFb, 

if for all i I {1,a.. , a} and y element of the domain {y c E ai(y) > 0}, we have 

(4.1) F (y) El F 
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Definition 10. The mapping Fa with components Ffa is an a-supermapping of the 
first kind associated with F if Fa is an a-supermapping associated with F, there 
exists an a-supermapping Fb associated with F such that Fa aFb, and 

(4.2) yP 1y*,p--+oo implies Fi(yP) 1. Fi(y*),p--oo for alli E {1,..., Ia}, 

where the notation yP J y*, p -* oo means that 

y* < < YP+ < yP < ... < yo and lim yP = y*. 
p- 00 

Remark 5. The relation (4.2) can be interpreted as a property of continuity of Fb 
related to the partial ordering. 

Proposition 7. Let the assumptions of Proposition 6 hold. Let Fa be an a-super- 
mapping of the first kind associated with F and assume that the steering S satisfies 

(4.3) for all i C {1, ... , a}, the set {p C N I s(p) = i} is infinite and 

(4.4) for all i{,. . ., a}, lim Pi (p) = +oo. 
p-oo- 

Then the sequence {yP} defined by (3.7)-(3.9) satisfies yP I y, where 
- 

is the unique 
solution of problem (2.5). 

Proof. It follows from (3.3), (3.4), and (3.7) that for all p > 1 such that s(p) i 
and Kip 0, we have 

Pi (P) pa __ q 

(4.5) Yi = yiq?l 
- 

where 

(4.6) q max k. 
k EKP - 

We introduce now the sequence {Zm} such that for all i E {1,.,.-., a, 

(4.7) z2m = YP m > 0, 
(4.8) zm = Fi y), m > 1, 

where m = card Kip, s(p) = i, and q = maXkeKP k. It follows from Proposition 6 
and (4.7) that 

(4.9) z2m J,yi*,m--+ oo for all i E {1,... I a}, 

where y* is an a-supersolution. It follows from the relations (4.8), (4.1), (3.19), 
(4.5), and (4.7) that for all i C {1, I .., I} and m > 1, we have 

(4.10) ~~2m-1 Fb (~q) E Fa (~q) I q) ( m2m-2) (4.10) Fz( WM z~r,~2 

Consider now the following notation. For all i E {1, ... , a} and I E N, 

(4.11) ~ ~ ~ ~ 7 Zy= 2m- I if I-=2m -1. 

The relations (4.9)-(4.11) imply that 

(4.12) Z' I y*, I -- oo, for all i C III... ale. 

We note that limp-, card Kip = +oo since 

Kip = {k c N I s(k) = i and 0 < k < p} c {k C N I s(k) = i}, 
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and the set {k c N I s(k) = i} is infinite from (4.3). Hence q = maXkKP k -* +00, 
if m card Ki' -- +oo. So, it follows from the relations (4.12) and (4.8) that for 
all i E{1, ..., Ia}, 

(4.13) Y* = lim z 2m-1 = lim Fl(q 
m- oo q- oo 

It follows from (3.9) and (4.4) that 

(4.14) Yq I Y*, q - oco 

Thus, the relations (4.13), (4.14), and (4.2) imply 

Y* = lim Fl(yq) = F (y*), for all i 1 .1.., Ia}. 
q--+ 00 

It follows from Definition 4 that Fib(y*) = y* implies Fi(y*) = y*, for all i E 
{1, ... , a}. Hence, y* =y which is the unique solution of problem (2.5). D 

4.2. a-supermappings of the second kind. 

Definition 11. The mapping Fa with components Fia is an a-supermapping of 
the second kind associated with F if Fa is an a-supermapping associated with F 
and for all i C {1, ... I, o} and y element of the domain of definition of Fia: {y C E 
ai(y) > O}, there exists 6 > 0 such that 

(4.15) flyi - Fi(y)lli > flyi - Fi(y)lli, 

where 11 Ili is a norm defined in Ei. 

Proposition 8. Let the assumptions of Proposition 7 hold and assume that F' is 
an a-supermapping of the second kind associated with F. Then the sequence {yP} 
defined by (3.7)-(3.9) satisfies yP [ y, where y- is the unique solution of problem 
(2.5). 

Proof. It follows from Proposition 6 that yP [ y*. Then for all i {1,... I, o} and 
E > 0, there exists p(e) c N, such that for all p > p(E) with s(p) i, we have 

Iyp Yi y 2li < -E. and flyP+ -y*i Ii < 8 6 

Then 

(4.16) IMP -yi" Ili < e.8 

It follows from (4.16), (3.7), (3.3), (3.9), and (4.15) that for all i {1, ... , a} and 
E > 0, there exists p(E) c N, such that for all p > p(E) with s(p) i, we have 

(4.17) p - Fj(yP)li <K 

It follows from Proposition 6, (3.9), and (4.4) that 

(4.18) t Y*, p - ?. 

Let i = s(p). We now introduce the following notation: uP(i) u .. . , Uj(i),... 

where 

if . i, 
u3i }Fi (P) if j = i. 
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From (2.7) and (2.8) we find that 

(4.19) aj(uP(i)) =0, for all p ENand iEf{1, ... ., oz} such that i = s(p). 

It follows from (4.17) and (4.18) that for all i C {1, . ... I }, we have 

(4.20) lim uP (i) = y*. 
p->oo 

By the continuity of a it follows from (4.19) and (4.20) that 

ai (y* ) = O, for all i (E { I, ... ., al. R 

5. APPLICATION TO A CLASS OF NONLINEAR SIMULTANEOUS EQUATIONS 

We consider in this section an M-function obtained by a diagonal monotone 
perturbation of an M-matrix A 

(5.1) a(x) =Ax-b+y9(x), 

where b C Rh, (o(x) = diag{... ., f(xi),... }, and the point-to-point functions Spi 
are monotone increasing. Moreover, the functions Si are also continuous. Consider 
now the solution of the following nonlinear simultaneous equations 

(5.2) a(x) = 0, 

by asynchronous iterations with order intervals derived from the Schwarz alternat- 
ing subdomain method. 

Remark 6. The results of this section can be extended to the case where p(x) is a 
diagonal monotone maximal and possibly multivalued operator (see [1]). Then we 
must solve the following nonlinear algebraic problem 

(5.3) b-Ax C (x). 

5.1. Connection with the discrete Schwarz alternating procedure. To sim- 
plify the presentation we consider in this subsection the case of two discrete subdo- 
mains that may overlap. We introduce M1, m2 and n which are three integers, n is 
the number of discretized points, m1 denotes the last index of the first subdomain, 
and m2 the first index of the second subdomain, then 

1 <m2 <m1l< n. 

We introduce also the sets 

El = fl, .. *, ml}, T2-={M2, *.*.* n}, T = E, n T2 = fM2 ...... mll}- 

Let m = m1 -m2 + 1 and m = n + Em. We will consider in the sequel augmented 
vectors of Rn and use the following notations: 

7-1 = {11 .. I Tn, ml, 72 = {mnl + 1, ... ., m}, 

where T1' and I2/ correspond to the overlapping. We define the mappings p R, p2: 

*RT as follows. For all u E RTn, the mappings pl (U), p2 (U), with components 
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m (U), p2 (u), respectively, are given by 

fU V I E It, 

j3 (u) V i V ' 

11-6m,) Vi T (e r2', 

0, V l 

pl2 (U) = 
0 
O, 81 ' 

1Ul-6mn Vl et2. 

We define also the mappings r1, r2: Rm - Rn as follows: for all i E Rn, the 
mappings r1 (i), r2 (i) with components r (ui), r2 (iu), respectively, are given by 

(Ul +E 6r V E T2 (DE' 

1U1I+6m, VleTE2. 
Remark 7. For all i E {1, 2} and u E RnT, we have riQ(i(u)) = u. The mappings 
pl1,3p2(r1, r2) transform a vector of size n (m) into a vector of size m (n). 

We consider now the following system of equations 

(5.4) a(ut) = O, 

where the mapping & from Rn into Rn with components &k (ii), k = 1,..., m, is 
defined as follows: 

5k(U)i-=ak (r1 (ii)) V k c El, 

(ak(u) ak-6m (r2(u)), V k E T2. 

Proposition 9 (see [17]). Let A E L(R n; Rn) be an M-matrix. Then the matrix 
A E L(Rm; R'm) which results from the above augmentation process is also an M- 
matrix. 

Remark 8. The nonlinear diagonal operator (o from Rn onto itself can be extended 
similarly. 

Corollary 1. Under the assumptions of this section, the mapping & defined by 
(5.5) is a surjective M-function. 

Remark 9. The cases with a subdomains (oa > 2) where no components belong to 
more than two subdomains can be reduced to the case where oa = 2 by considering 
a banded subdomain decomposition with red-black ordering. 

5.2. Application to the solution of nonlinear partial differential equa- 
tions. An illustration of the above theoretical study is given in this subsection. 
We consider two examples. 

Example 1. Nonlinear diffusion problem. We shall primarily be concerned with 
the following problem. 

Find u such that 
(5.6) { -Au + a -' + b f3 + ec' = f everywhere in Q, 

u/OQ- 0, 
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where Q is an open domain of R2 (or R3), &Q is the boundary of Q, a, b, c are 
real numbers, and c is positive. We consider the discretization of the problem (5.6) 
using five-point difference equations for the Laplace operator and only one-sided 
backward or forward difference equations, according to the sign of a and b, for the 
first derivatives of u. Then we have the system 

0e 

(5.7) E Ai3x3 + (pi(x) = bi, for all i E {1, .l. ., al, 
j=1 

where xi, bi C Ei, and 

(5.8) pi (xi) is isotone, convex, and continuously differentiable. 

We note that the matrix A is block-partitioned. Moreover it follows from the above 
discretization that A is an M-matrix. 

Remark 10. We can obtain a discretized system with the same properties using 
suitable P, finite element methods. 

The problem (5.7) is similar to (2.5). Let ai(zi; w) = Aiizi+i(zi)+Z Aij Aijw - 
bi. We can define implicitly a fixed point mapping F from Rn into Rn satisfying 
(2.8) and associated with problem (5.7). 

Let w, x?, and zo be three vectors of Rn such that 

ai(w) > 0, z = Wi, and xo = Zi-Fi(w), for all i E {1,. ..,}. 

Under the above assumptions the mapping ai is an M-function on the order interval 
~x? z? 

We introduce the block-diagonal matrix C(w), derived from Newton's method, 
with diagonal blocks Ci (w) given by 

Ci (w) = Aii + 9, (w). 

The matrix Ci (w) is an M-matrix since Si is convex and the matrix Aii is an 
M-matrix. Consider now the mappings Fa with components Ff' defined by 

(5.9) Fqa(w)= z, for all i C .l... ,Ia 

where k is an integer, z9 = wi, and zk is the kth iteration of the following algorithm: 

(5.10) zk+l = zk - C-1(Zp'(k)) . a(zk), k = 0,1, ..., 

where 0 < p'(k) < k. We first consider the mapping Fb with components Fib given 
by Fib(w) = z, for all i E 1, .{.., a} . 

Proposition 10. The mapping Fb is an a-supermapping associated with F. 

Proof. It follows from the definition of zo that a(z?) > 0. Moreover C-1(z0) > 0 
since 0(z?) is an M-matrix. Then 

z - z? = -C-' (z?)a(z?) < 0. 

It follows from the convexity of p (see [31, p. 448]) that 

(5.11) a(z?) - a(z) < C(z?)(z - z-). 

Thus if z- is the solution of the problem a(z) = 0, then 

z- = z--C`1(z0)a(z-) = z1 - (z - z-) + C-1(z0)(a(z0) - a(z-)) 
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and 

z - (z - z) + C1(z0)(a(z0) - a(z)) < z1 - (I - C-1(z0) C(z))(zo - z1 

Thus 
1 z 

Moreover it follows from the convexity of (o that 

0 = a(z?) + C(z0)(z1 - zo) < a(zl). 

We can show analogously by induction (see [37]) that 

(5.12) - < ...< zk < zkl < ... < zo and a(zk) > 0. 

Thus the mappings Fa are a-supermappings associated with F. Moreover it follows 
from (5.10), (5.12), and Definition 9 that 

FaaFb. 

We recall that Fib(w) = z- = w - C-1(w) . a(w), where c(w) is a block-diagonal 
matrix with blocks Ci(w) Aii + (p'(w). It follows from (5.8) that the mapping 
a(w) given by 

a(w) = Aw + (p(w) -b, 

is continuous. Moreover we have 

(Aii + ' (wi))1 < A, 

since A is an M-matrix and p' is positive (see [31, p. 553). It follows that the 
spectral radius of C-1(w) is less than or equal to the spectral radius of the inverse 
of the block-diagonal matrix with blocks Aii which is an M-matrix. Thus the linear 
application associated with the matrix C-1(w) is Lipschitz continuous and C-1(w) 
is uniformly Lipschitz continuous. By the continuity of a(w), 0(w) and the fact 
that C-1(w) is uniformly Lipschitz continuous, we find that the mapping Fb is 
continuous. So, the mappings Fa defined by (5.9) are a-supermappings of the first 
kind associated with F. 

Remark 11. Taking into account the norm convergence properties of Newton's 
method quoted in subsection 13.3.4 of [31], we can show that the above a-supermap- 
pings Fa and Fb are also a-supermappings of the second kind associated with F. 

Example 2. The discretized and linearized Hamilton-Jacobi-Bellman problem. 
We consider the following problem 

(Find u such that 

(5.13) max{A1u - f1,A2u _ f2} = 0, everywhere in Q, 

u/&Q = 0, 
where A1 and A2 are two elliptic operators of second order satisfying the Maximum 
Principle and fl, f2 are elements of L2 (Q). 

Under appropriate discretization of problem (5.13) by finite differences and as- 
suming in particular that the incidence matrices B1 and B2 associated with the 
discretization matrices are equal, we obtain the following discretized problem 

(5.14) {Find x solution of 
max(Al . x - bl, A2 . x - b2) =0, 



252 J. C. MIELLOU, D. EL BAZ, AND P. SPITERI 

where b1, b2 E Rn and A1, A2 are matrices of size n x n with entries a, a , respec- 
tively, which satisfy 

(5.15) a >0, a,r < 0, i=1,. .., n, j = 1,..., n, j 7 i, r 1,2, 

(5.16) Eaj 
> 0, i = 1, ...I, r = 1,2, 

(5.17) there exists at least one i such that E aj > 0 and Ea?j > 0, 

(5.18) the matrices A1 and A2 are irreducible. 

Remark 12. We recall that the incidence matrix B1 (B2) of size n x n is generated 
from the matrix A1 (A2) by replacing the entries ab - (at2) by 1 if a' 7& 0 (a? . 0). 

We note that the matrices A1 and A2 are diagonally dominant. Under the above 
assumptions A1 and A2 are also M-matrices (see [38]). The problem (5.14) c-an be 
linearized as follows: 

(5.19) a(x) = (x) . x - b(x) = 0, 

where b(x) C Rn and 0(x) is a matrix of size n x n. If (Alx - b1)i is greater 
than (A2x- b2)i, then the ith row of matrix 0(x) is equal to the ith row of 
matrix A1 else it is equal to the ith row of matrix A2. The vector b(x) is defined 
analogously. It follows from the above assumptions that the matrix 0(x) is an 
irreducible diagonally dominant matrix; moreover C(x) is an M-matrix (see [38]). 
Thus a is an M-function. 

The mapping ai (zi; w) defined by 

ai(zi; w) = max (A'zi - (bl - Z A'wj) A Z- (b2 -E A2Wj3)) 0, 

is a continuous surjective M-function since 0(x) is an M-matrix. We can define 
a fixed point mapping F from RTn into RTn satisfying (2.8) and associated with 
problem (5.19). 

Let w, x?, z? be three vectors of Rn such that 

ai(w) =max(ZAlwj -bl, ZA2jwj -b2) > 0, 

zi = wi, and xi Zi Fi(w), for all i E 1,. . .,a}. Let x, z be two vectors of Rn 
such that xi, zi E (x?, z0) , for all i C {1, ... , a}. Consider the following notation: 
for all i {1, ..., Io} , 

ai (x) = max (Atx - bt) (A'x - ) , 
tE{1,2} 

ai(z) = max (Atz - bt)i = (Asz - bs)2. 
tEI{1 ,2} 

We have for all i C .11 ... I, o}, (Asx - bS)i < ai(x). Then 

(5.20) (Asx - bS)i - (A'x - b)i < ?0. 

Hence we have 

(5.21) (Asz - bS)i - (AMx - b)i - (As(z - x))i < 0. 
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Thus for all i C 1,. .., a}, 

(5.22) a (z)-ai (x) < (C(z) (z -x)), 

since the ith line of 0(z) is the ith line of As(z). So the mapping a is order-convex. 
We now define the mapping Fa with components Fya as follows: 

Ff'(w) =zk, for all i c {1,... ,oZ, 

where k is an integer and the vector zk is given by the following algorithm: 

(5.23) zk+l = Zk -C-l(zP(k))a(zk), 

which is derived from the fixed point equation z = z -C- 1 (z)a(z). We analogously 
define the mapping Fb with components Fib as follows: 

F,b (w) = Z., for all i E {11 ... ., oZ}. 

By using an argument similar to the one developed in the proof of Proposition 
10 it follows from (5.22) that the mappings Fa and Fb are two a-supermappings 
associated with F which satisfy 

FaeFb . 

The continuity of the mapping Fb follows from the continuity of the mapping a since 
the conivex hull of continuous functions of Rn is continuous. Thus the mapping Fa 
is an a-supermapping of the first kind associated with F. 

Remark 13. The reader is referred to [23] for the solution of the Hamilton-Jacobi- 
Bellman problem via several sequential algorithms. The first two algorithms pro- 
posed in [23] when used for the solution of the subproblems presented above can 
lead to a-supermappings of the first kind; in particular the second algorithm cor- 
responds exactly to the linearization method (5.19). Note also that the methods 
presented in [23] are not related to relaxation or subdomain methods. 

Remark 14. The obstacle stationary problem associated to a second order elliptic 
operator satisfying the maximum principle can classically be written as a Hamilton- 
Jacobi-Bellman problem, moreover the algorithms presented in this paper can be 
used for the numerical solution of this problem. Nevertheless the above study can- 
not be applied to this case since assumption (5.18) is not satisfied. The obstacle 
problem is important, but we have restricted attention to the case treated in Ex- 
ample 2 in order to a give a short presentation. The reader is referred to [37] for a 
detailed study of the obstacle stationary problem. 

5.3. Numerical experiments. In this subsection we briefly present computa- 
tional experience using a shared memory multiprocessor IBM 3090 with up to six 
vector processors. 

We have considered the two problems presented in subsection 5.2 (i.e. the non- 
linear diffusion problem and the discretized Hamilton-Jacobi-Bellman equations). 
The Schwarz alternating procedure with overlapping has been used. The efficiency 
of parallel iterative algorithms is reported in Table 1 using the classical definition 
of efficiency: e = ti , where tp denotes the computing time using p processors. 
Results are given for discretized domains with 25000 points. From Table 1 it can 
be seen that the efficiency of asynchronous iterations with order intervals is better 
than the efficiency of parallel synchronous iterations. Idle time due to synchro- 
nization and overheads of synchronization reduce the efficiency of parallel iterative 
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methods. Moreover the efficiency decreases as the number of processors increases. 
Details of the implementation and other computational results can be found in [37]. 

TABLE 1. Efficiency of parallel algorithms 

nonlinear diffusion problem Hamrilton-Jacobi-Bellman problem 
number of synchronous asynchronous synchronous asynchronous 
processors algorithms algorithms algorithms algorithms 

3 0.87 0.99 0.86 0.90 
6 0 0.65 0.81 0.85 0.90 
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